Arithmetic Algebraic Geometry
نویسندگان
چکیده
[3] , Visible evidence for the Birch and Swinnerton-Dyer conjecture for modular abelian varieties of analytic rank zero, Math. Finiteness results for modular curves of genus at least 2, Amer.
منابع مشابه
Software Engineering and Complexity in Effective Algebraic Geometry
We introduce the notion of a robust parameterized arithmetic circuit for the evaluation of algebraic families of multivariate polynomials. Based on this notion, we present a computation model, adapted to Scientific Computing, which captures all known branching parsimonious symbolic algorithms in effective Algebraic Geometry. We justify this model by arguments from Software Engineering. Finally ...
متن کاملSelf-similar fractals and arithmetic dynamics
The concept of self-similarity on subsets of algebraic varieties is defined by considering algebraic endomorphisms of the variety as `similarity' maps. Self-similar fractals are subsets of algebraic varieties which can be written as a finite and disjoint union of `similar' copies. Fractals provide a framework in which, one can unite some results and conjectures in Diophantine g...
متن کاملArithmetic upon an Algebraic Surface
The title of my lecture is, I am afraid, probably misleading and certainly too ambitious. For, on the one hand, the connection between arithmetic and geometry suggested by it is not the modern development in divisors theory, but an application of algebraic geometry for arithmetical purposes. On the other hand, I shall confine the subject of this lecture to cubic surfaces in ordinary space, cons...
متن کاملΛ-rings and the Field with One Element
The theory of Λ-rings, in the sense of Grothendieck’s Riemann– Roch theory, is an enrichment of the theory of commutative rings. In the same way, we can enrich usual algebraic geometry over the ring Z of integers to produce Λ-algebraic geometry. We show that Λ-algebraic geometry is in a precise sense an algebraic geometry over a deeper base than Z and that it has many properties predicted for a...
متن کاملArithmetic of Calabi-yau Varieties and Rational Conformal Field Theory
It is proposed that certain techniques from arithmetic algebraic geometry provide a framework which is useful to formulate a direct and intrinsic link between the geometry of Calabi-Yau manifolds and the underlying conformal field theory. Specifically it is pointed out how the algebraic number field determined by the fusion rules of the conformal field theory can be derived from the number theo...
متن کاملAlgebraic models and arithmetic geometry of Teichmüller curves in genus two
A Teichmüller curve is an algebraic and isometric immersion of an algebraic curve into the moduli space of Riemann surfaces. We give the first explicit algebraic models of Teichmüller curves of positive genus. Our methods are based on the study of certain Hilbert modular forms and the use of Ahlfors’s variational formula to identify eigenforms for real multiplication on genus two Jacobians. We ...
متن کامل